| Peer-Reviewed

Matlab / Simulink Based Simulation of Monocrystalline Silicon Solar Cells

Received: 27 June 2015     Accepted: 29 June 2015     Published: 3 September 2016
Views:       Downloads:
Abstract

A solar cell is an electrical device that converts light into an electric current. Electron-hole pairs are generated inside the solar cell when light is absorbed. A two diodes equivalent model is used to describe the electronic properties of solar cells. The open-circuit voltage (Voc) is created by the series resistance and the shunt resistant of the solar cell. The theme of modeling is based on the solar radiation, temperature of system and environment to determine the effect of cell parameters like photo generated current, saturation current, series resistance, shunt resistance and ideality factor on the performance of the solar cell. In this paper we study the influence of temperature, series resistance and shunt resistance on the current-voltage (I-V) characteristics simulated in Matlab / Simulink.

Published in International Journal of Materials Science and Applications (Volume 5, Issue 6-1)

This article belongs to the Special Issue Energy and Materials

DOI 10.11648/j.ijmsa.s.2016050601.13
Page(s) 11-15
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Current-Voltage, Ideality Factor, Open-Circuit Voltage, Output Power, Solar Cells

References
[1] V. Avrutin, N. Izyumskaya, H. Morkoc, “Amorphous and micromorph Si solar cells: current status and outlook”, Turk Journal of Physics 2014, 38: 526 -542
[2] F. Ghani, G. Rosengarten, M. Duke, J.K. Carson, “The numerical calculation of single-diode solar-cell modelling parameters”, Renewable Energy 2014, 72: 105-112
[3] A. El-Shaer, , M. T. Y. Tadros, M. A. Khalifa, “Effect of Light intensity and Temperature on Crystalline”, The International Journal of Emerging Technology and Advanced Engineering 2014, 4: 311-318
[4] E. Cuce, P. Cuce, T. Bali “An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters”, Applied Energy 2013, 111: 374-382
[5] M. Chegaar, A. Hamzaoui, A. Namoda, P. Petit, M. Aillerie and A. Herguth “Effect of Illumination Intensity on Solar Cells Parameters”, Energy Procedia 2013, 36:722-729
[6] O. Breitenstein “An Alternative One-diode Model for Illuminated Solar Cells”, Energy Procedia 2014, 55: 30-37
[7] E. Radziemska “The effect of temperature on the power drop in crystalline silicon solar cells”, Renew Energy 2003, 28:1-12.
[8] R. Foster, M. Ghassemi, and A. Cota, “Solar Energy: Renewable Energy and the Environment”, CRC Press Taylor & Francis Group, Boca Raton, Fla, USA, 2010
[9] S. Ndoye, I. Ly, F. Barro, O. Lemrabott, G. Sissoko “Modélisation et simulation sous Matlab/Simulink de la chaine d’alimentation d’une station relais de télécommunications en énergie solaire photovoltaïque dans une zone isolée du réseau électrique”, J. Sci., 2009, 9: 45-55
[10] F. Khan, S.N. Singh, M. Husain “Effect of illumination intensity on cell parameters of a silicon solar cell”, Solar Energy Materials & Solar cells 2010, 94: 1473-1476
[11] D. Rodriguez, P. Horley, J. Hernandez, V. Vorobiev, N. Gorley, “Photovoltaic solar cells performance at elevated temperatures”, Solar Energy 2005, 78: 243-250.
[12] T. Meng, C. Zhang, C. Liu, S. Meng, “Experimental Study of Light Intensity on I-V Characteristic of Single Crystalline Silicon Solar Cell”, Advanced Materials Research 2012, 418-420: 725-1728.
[13] E. Skoplaki, A. PalyvosJ “On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations”, Solar Energy Materials & Solar cells 2009, 83: 614-24
[14] K. Ishaque, Z. Salam, H. Taheri, A. Shamsudin “Simple, fast and accurate two-diode model for photovoltaic modules”, Solar Energy 2011, 85: 1768-1779
[15] U. Stutenbaeumer, B. Mesfin, “Equivalent model of monocrystalline, polycrystalline and amorphous silicon solar cells”, Renewable Energy 1999, 18: 501-512
Cite This Article
  • APA Style

    B. Zaidi, I. Saouane, M. V. Madhava Rao, R. Li, B. Hadjoudja, et al. (2016). Matlab / Simulink Based Simulation of Monocrystalline Silicon Solar Cells. International Journal of Materials Science and Applications, 5(6-1), 11-15. https://doi.org/10.11648/j.ijmsa.s.2016050601.13

    Copy | Download

    ACS Style

    B. Zaidi; I. Saouane; M. V. Madhava Rao; R. Li; B. Hadjoudja, et al. Matlab / Simulink Based Simulation of Monocrystalline Silicon Solar Cells. Int. J. Mater. Sci. Appl. 2016, 5(6-1), 11-15. doi: 10.11648/j.ijmsa.s.2016050601.13

    Copy | Download

    AMA Style

    B. Zaidi, I. Saouane, M. V. Madhava Rao, R. Li, B. Hadjoudja, et al. Matlab / Simulink Based Simulation of Monocrystalline Silicon Solar Cells. Int J Mater Sci Appl. 2016;5(6-1):11-15. doi: 10.11648/j.ijmsa.s.2016050601.13

    Copy | Download

  • @article{10.11648/j.ijmsa.s.2016050601.13,
      author = {B. Zaidi and I. Saouane and M. V. Madhava Rao and R. Li and B. Hadjoudja and S. Gagui and B. Chouial and A. Chibani},
      title = {Matlab / Simulink Based Simulation of Monocrystalline Silicon Solar Cells},
      journal = {International Journal of Materials Science and Applications},
      volume = {5},
      number = {6-1},
      pages = {11-15},
      doi = {10.11648/j.ijmsa.s.2016050601.13},
      url = {https://doi.org/10.11648/j.ijmsa.s.2016050601.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.s.2016050601.13},
      abstract = {A solar cell is an electrical device that converts light into an electric current. Electron-hole pairs are generated inside the solar cell when light is absorbed. A two diodes equivalent model is used to describe the electronic properties of solar cells. The open-circuit voltage (Voc) is created by the series resistance and the shunt resistant of the solar cell. The theme of modeling is based on the solar radiation, temperature of system and environment to determine the effect of cell parameters like photo generated current, saturation current, series resistance, shunt resistance and ideality factor on the performance of the solar cell. In this paper we study the influence of temperature, series resistance and shunt resistance on the current-voltage (I-V) characteristics simulated in Matlab / Simulink.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Matlab / Simulink Based Simulation of Monocrystalline Silicon Solar Cells
    AU  - B. Zaidi
    AU  - I. Saouane
    AU  - M. V. Madhava Rao
    AU  - R. Li
    AU  - B. Hadjoudja
    AU  - S. Gagui
    AU  - B. Chouial
    AU  - A. Chibani
    Y1  - 2016/09/03
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ijmsa.s.2016050601.13
    DO  - 10.11648/j.ijmsa.s.2016050601.13
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 11
    EP  - 15
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.s.2016050601.13
    AB  - A solar cell is an electrical device that converts light into an electric current. Electron-hole pairs are generated inside the solar cell when light is absorbed. A two diodes equivalent model is used to describe the electronic properties of solar cells. The open-circuit voltage (Voc) is created by the series resistance and the shunt resistant of the solar cell. The theme of modeling is based on the solar radiation, temperature of system and environment to determine the effect of cell parameters like photo generated current, saturation current, series resistance, shunt resistance and ideality factor on the performance of the solar cell. In this paper we study the influence of temperature, series resistance and shunt resistance on the current-voltage (I-V) characteristics simulated in Matlab / Simulink.
    VL  - 5
    IS  - 6-1
    ER  - 

    Copy | Download

Author Information
  • Laboratoire Des Semi-Conducteurs, Département De Physique, Faculté Des Sciences, Université Badji-Mokhtar, Annaba, Algérie

  • Laboratoire De Physique énergétique, Faculté Des Sciences, Université Constantine, Constantine, Algérie

  • Department of Physics, Osmania University, Hyderabad, India

  • Department of Chemical Engineering, Louisiana State University, LA, USA

  • Laboratoire Des Semi-Conducteurs, Département De Physique, Faculté Des Sciences, Université Badji-Mokhtar, Annaba, Algérie

  • Laboratoire Des Semi-Conducteurs, Département De Physique, Faculté Des Sciences, Université Badji-Mokhtar, Annaba, Algérie

  • Laboratoire Des Semi-Conducteurs, Département De Physique, Faculté Des Sciences, Université Badji-Mokhtar, Annaba, Algérie

  • Laboratoire Des Semi-Conducteurs, Département De Physique, Faculté Des Sciences, Université Badji-Mokhtar, Annaba, Algérie

  • Sections